D-type cyclins control cell division and developmental rate during Arabidopsis seed development
نویسندگان
چکیده
Seed development in Arabidopsis is characterized by stereotypical division patterns, suggesting that coordinated control of cell cycle may be required for correct patterning and growth of the embryo and endosperm. D-type cyclins (CYCD) are key cell cycle regulators with roles in developmental processes, but knowledge regarding their involvement in seed development remains limited. Here, a family-wide gene expression, and loss- and gain-of-function approach was adopted to reveal additional functions for CYCDs in the development of seed tissues. CYCD genes have both discrete and overlapping tissue-specific expression patterns in the seed as revealed by GUS reporter gene expression. Analysis of different mutant combinations revealed that correct CYCD levels are required in seed development. The CYCD3 subgroup is specifically required as its loss caused delayed development, whereas overexpression in the embryo and endosperm of CYCD3;1 or a previously uncharacterized gene, CYCD7;1, variously leads to induced proliferation, abnormal phenotypes, and elevated seed abortion. CYCD3;1 overexpression provoked a delay in embryonic developmental progression and abnormalities including additional divisions of the hypophysis and suspensor, regions where CYCD3 genes are normally expressed, but did not affect endosperm development. Overexpression of CYCD7;1, not normally expressed in seed development, promoted overgrowth of both embryo and endosperm through increased division and cell enlargement. In contrast to post-germination growth, where pattern and organ size is not generally related to division, results suggest that a close control of cell division through regulation of CYCD activity is important during seed development in conferring both developmental rate and correct patterning.
منابع مشابه
Complexes of D-type cyclins with CDKs during maize germination
The importance of cell proliferation in plant growth and development has been well documented. The majority of studies on basic cell cycle mechanisms in plants have been at the level of gene expression and much less knowledge has accumulated in terms of protein interactions and activation. Two key proteins, cyclins and cyclin-dependent kinases (CDKs) are fundamental for cell cycle regulation an...
متن کاملCYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis
A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how...
متن کاملTranscriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation.
During the early stages of seed development, Arabidopsis (Arabidopsis thaliana) endosperm is syncytial and proliferates rapidly through repeated rounds of mitosis without cytokinesis. This stage of endosperm development is important in determining final seed size and is a model for studying aspects of cellular and molecular biology, such as the cell cycle and genomic imprinting. However, the sm...
متن کاملThe Arabidopsis D-type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation.
The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G₁-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cycl...
متن کاملSequential steps for developmental arrest in Arabidopsis seeds.
The continuous growth of the plant embryo is interrupted during the seed maturation processes which results in a dormant seed. The embryo continues development after germination when it grows into a seedling. The embryo growth phase starts after morphogenesis and ends when the embryo fills the seed sac. Very little is known about the processes regulating this phase. We describe mutants that aff...
متن کامل